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A lifting line theory of flapping wings in steady forward flight is presented in which the 
unsteady features of the flow are modelled. A detailed three-dimensional model of 
the vortex wake is used to evaluate the unsteadiness to first order. The method gives 
satisfactory agreement with well-known limiting cases. Relationships between the 
geometric and the kinematic parameters, and the forces and the power are predicted 
which are compatible with the limited experimental evidence. The theory is applied 
to the calculation of the power curve of specific birds. Important similarities and 
differences are observed between the present results and those of Pennycuick (1975) 
and Rayner (1979~) .  

1. Introduction 
Continuous circular motion is rarely found in nature and as a consequence avian 

and aquatic propulsion are usually effected by the reciprocation of aerodynamic/ 
hydrodynamic surfaces about which a circulation is established. This results in a 
component of force in the desired direction of motion. For avian flight aerodynamic 
lift is also required to sustain motion in the atmosphere; this may also be achieved by 
flapping surfaces or, at sufficiently high speed, by gliding motion. In  most man-made 
air-breathing flying vehicles, on the other hand, propulsion is achieved by some form 
of steady or quasi-steady flow propulsor employing propellers, rotors, turbines, etc., 
spinning about an axis, as in the case of fixed wing aircraft and helicopters. Notable 
exceptions are the ornithopter and the pulse-jet, each of which employ non-steady 
flow processes. 

A complete and exact analysis of flapping flight is probably one of the most complex 
goals to be attempted in flight mechanics. Indeed, birds, the most successful prac- 
titioners of this mode of transport, use a complex interaction between viscous and 
inviscid non-steady aerodynamics, variable geometry flexible surfaces of variable 
porosity, together with rapid-response adaptive biological systems, to achieve their 
outstanding results. This complexity has so far prevented any exact modelling of 
avian flight mechanics, although progress has been made by adapting the classical 
mechanics of flight model (see, for example, Etkin 1972) for conventional fixed wing 
aircraft to this problem. The most widely used model of this type is that of Pennycuick 
(1968)) which has been modified by Tucker (1973). Subsequent variations on the basic 
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model have been summarized by Pennycuick (1975). A review of bird flight analyses 
has been presented by Lighthill (1977) and more recently by Rayner (1979b). 

I n  Pennycuick's model the forces which sustain and propel result from an assumed 
actuator disk and the associated steady momentum flux, similar in concept to the 
simple model of a vectored thrust aircraft or helicopter. The model ignores, however, 
the essential feature of flapping as a reciprocating and hence intermittent integrated 
lifting and propulsive mechanism for which the generated forces result from an 
unsteady momentum flux. Nevertheless, useful parametric results may be obtained 
from such theoretical models, particularly with regard to the power characteristics. 

The essential implicit assumption of models based on an actuator disk is the steady 
nature of the momentum flux, often referred to as the vortex wake, associated with the 
forces produced. These models therefore ignore the periodic variation of the vortex 
wake and the associated periodic aerodynamic loading on flapping wings. Wagner 
(1 925) showed that the lift on an infinite-aspect-ratio wing impulsively started from 
rest took several chord lengths to reach a steady value because of the induced velocity 
field from the starting vortex. Similarly, each major change of aerodynamic loading 
which occurs a t  the extremities of the periodic motion of a flapping wing results in the 
formation of transverse vortices in the wake analogous to  the starting vortex. These 
vortices have been observed by Wood & Kirmani (1970) in the wake of a heaving 
aerofoil and by Kokshaysky (1979) in the wake of a flying bird. For wings of chord c* 
flapping with angular frequency w and moving a t  speed 0, the vortex associated 
with the change of aerodynamic loading plays an increasing role in determining the 
rate of increase of the aerodynamic forces as the wing moves away from the vortex 
for increasing values of the frequency parameter wc*/ lJ .  Vortices shed on earlier 
cycles of the motion also influence the downwash field in the vicinity of the flapping 
surface but with a progressively diminishing magnitude. It is therefore to be expected 
that, as a consequence of these essentially non-steady phenomena, the average forces 
on a flapping wing would be significantly different from those predicted by any 
method based on steady momentum flux principles. Indeed, recent measurements by 
Cloupeau, Devillers & Devezeaux (1 979) of the instantaneous lift in the desert locust 
Schistocerca gregaria flying in a wind tunnel have experimentally confirmed the 
existence of significant unsteady effects. 

Betteridge & Archer (1974) for rigid wings and Archer, Sapuppo & Betteridge (1979) 
for flexible wings have included the periodic nature of the aerodynamic forces by 
applying the classical lifting line method to flapping wings. They calculated the 
induced velocity a t  the lifting line from a quasi-steady model of the wake. This method 
therefore excluded the unsteady features of the vortex wake which the results of the 
present work show to be important. 

More recently, Rayner (1979a, b, c) has modelled both hovering and forward flap- 
ping bird flight by using a more relevant model of the vortex wake. This model is 
based on the assumption that the wing is aerodynamically loaded only during the 
downstroke and that the associated shed vorticity rolls into a series of closed elliptic 
vortex loops. This model would seem to have good application to hovering and flight 
a t  low forward speeds. At higher speeds a small correction may be required since 
Brown (1953) has shown that a t  medium and high speeds the wing may also be aero- 
dynamically loaded during the upstroke but to a lesser extent than during the 
downstroke. 



Lifting line theory for Jlapping wings 99 

Many aspects of flapping flight therefore remain to be correctly modelied. I n  
particular, no attempt has yet been made to include an adequate description of the 
effect of the unsteady vortex wake on the aerodynamic loading of flapping wings, 
although Cone (1968) formulated such a model which proved too complicated for 
solution. One of the aims of the present work is to consider this effect by presenting 
an approximate description of the unsteady wake. It is detailed enough to represent 
the three-dimensional wake, yet simple enough for the induced velocity field to be 
evaluated numerically. By using this model wake, together with lifting line theory, a 
detailed unsteady spanwise loading distribution on the flapping wing is deduced 
and the input power required is obtained by considering the torque about the wing 
hinge. The motivation for this work has been to examine the importance of unsteady 
flow effects in flapping flight. 

As a detailed description of bird flight, the model is probably over-simplified because 
a number of effects, such as viscosity, porosity, variable geometry, etc., have not been 
included. Also, no attempt has been made to account for the efficiency of energy 
conversion between input and output of the bird’s flight muscles. However, in order 
to illustrate the possible effect of unsteady aerodynamic phenomena on avian flight 
mechanics, sample calculations of the power consumption and cost of transport for 
typical bird geometries are presented. 

2. Definitions and assumptions 
The flapping model is essentially that adopted by Lighthill (1977). Consider a pair 

of flapping wings flying a t  constant altitude and with a steady speed U .  They are 
hinged about a longitudinal axis (body axis) which makes an angle 0 with the flight 
path, as shown diagrammatically in figure 1. The wings are assumed to flap in a plane 
perpendicular to this axis. Two right-handed co-ordinate systems are defined: one is 
the conventional (i, j, k) system, the other, (1, m, n), is defined relative to the moving 
wings. The wings are a t  an incidence a, relative to the body axis. The total angular 
amplitude of flapping is /2, about a mean angle y. The instantaneous angle between 
the wing and the horizontal is $ ( t ) ;  the angular velocity of flapping, 4, is taken to be 
constant. The frequency of flapping is f and the angular frequency o = 2nf. The wing 
semispan is s, the radial distance is r * ,  0 < r* < s, and the wing chord is c*( r* ) .  

Let us now define the scope of our investigation more precisely by making the 
following assumptions. We restrict ourselves to rigid, non-porous, unswept wings of 
high aspect ratio. We assume that the fluid is incompressible and that the Reynolds 
number is high. The flow can then be considered to consist of an inner viscous region, 
the boundary layer, and an outer inviscid region. In  this paper we consider the inviscid 
flow and use aerofoil theory to determine the resultant aerodynamic forces on the 
wings. It is clear that, since we ignore the viscous region and the possible coupling 
effects between the two regions, our inviscid theory is only a partial solution to the 
problem at  hand. The study of the viscous effects leading to the determination of the 
profile drag in an unsteady flow, and the dynamic stall are topics for further investi- 
gation. 

Following Robinson & Laurmann (1956), in an unsteady flow we may express the 
resultant aerodynamic force per unit span N ( t )  normal to the relative velocity V*(t) 
by the series 

N = f ( a ,  V*) + g(&, V*) + h(B, V*) + . . . , 
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FIGURE 1 (a ) .  Diagram of the flapping wing showing co-ordinate systems. ( 6 )  Diagram of the 
velocities relative to the wing in a plane normal to the wing span axis m. B is the resultant of 
the forward velocity U ,  the flapping velocity #r* and the induced velocity w*. 
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where a(t) is the incidence. In  the present study we shall assume that the flapping 
frequency is low and consider only the first term, N z f (a ,  V*). The first-order unsteady 
effects are those resulting from the variations of the velocity and the incidence due 
to the flapping motion and the unsteady induced velocities. The neglected ci and V* 
terms, the dynamic viscous effects and the virtual mass effects, are assumed to be 
small. 

To avoid ambiguities, some other terms used throughout this study are defined 
below. The lift L and the thrust T are defined as the components of the resultant 
aerodynamic force perpendicular to and in the direction of the flight velocity U : 

k .  N(r*, t)dr, T( t )  = 2 

I n  the case of aircraft the thrust is negative and is called the induced drag. It will be 
obvious that for a system propelling itself by flapping the notion of induced drag does 
not apply. Finally, the power P is defined as the rate a t  which the aerodynamic 
forces do work about the wing hinges (Betteridge & Archer 1974): 

P(t) = 5 2d/osn.N(r*,t)r*dr*. (2) 

3. The vortex wake 
The above expressions for the lift, the thrust, and the power share one important 

factor, the local instantaneous normal force N(r*, t ) .  Classical aerofoil theory gives 
this as 

N = pv* A r*, (3) 

where p is the fluid density, I?* is the circulation and both the induced velocity com- 
ponent w* of V* and the circulation r* are unknown. They interact strongly, w* 
being the result of changes in r*. It is, therefore, important to use a physically realistic 
model of the vortex wake in order to obtain satisfactory distributions of r*, L, T, P, 
etc. Since the flow is unsteady and we propose to obtain the average values of the 
forces and the power from time integration over a cycle, the model of the wake must 
be detailed enough to include the main unsteady features in addition to the three- 
dimensional spatial features. 

Cone (1  968) and Betteridge & Archer (1974) qualitatively describe the vortex wake 
as the surface traced out by the wings in their forward flapping motion, consisting of 
a grid of vortices. These are the vortices due to the spanwise circulation gradient, 
which we call streamwise vortices, and the vortices due to the variation of the cir- 
culation with time, called the transverse vortices. The above-mentioned authors 
found their model too complex to be of use in a quantitative analysis. Their model 
is of the wake as it would appear if the vorticity remained fixed in space after being 
shed from the wings. However, i t  is well known that vortices do move because of their 
mutual interactions. Hence, we may develop a model which retains the transverse 
and the streamwise vortices, but rearranges them into a spatial assembly suggested 
by the interaction of the vortices. This new simplified spatial arrangement is more 
amenable to quantitative treatment. 

The wake of a high-aspect-ratio wing in steady flight consists of streamwise vortices 
only, and it is well known that they rapidly roll up into two discrete vortices. Wood 
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FIGURE 2. The vortex wake (schematic). 

& Kirmani (1  970) have shown that the wake of a heaving aerofoil consists of a series 
of discrete vortices arranged as a vortex sheet. For flapping wings, McRobert (1980), 
using a water tunnel, has demonstrated the existence of discrete periodic wake vortices 
and Kokshaysky (1 979) has observed a somewhat similar vortex loop structure in 
the wake of a flying bird. This leads us to adopt a model of the wake consisting of 
two parts, as shown in figure 2: a near wake in which the vorticity has partly rolled 
up, and a far wake consisting of discrete vortices. 

The near wake is the surface traced out by the wings during the stroke under con- 
sideration. A stroke is taken to start a t  the highest or lowest elevation of the wings. 
In  the near wake, it is assumed that the streamwise vortices still form a vortex sheet. 
The transverse vorticity is collected at  the position of the wings a t  the start of each 
stroke. The model thus ignores the subsequent distortion and convection of the wake; 
2 standard assumption in steady wing theory. The hypothesis is that the velocity 
induced a t  the wings can be evaluated satisfactorily by assuming that the vortices 
stay in the stream surface in which they originated. This assumption clearly becomes 
invalid in the limit of low speeds. At low speeds a model taking into account the con- 
vection of the vortices, such as that of Rayner (1979a, b ) ,  is needed. In  the numerical 
evaluation of the induced velocities, the curved line vortices were replaced by a 
succession of short straight line segments. Finally, we may point out that the model- 
ling done here is similar in nature to that used in the case of helicopters; see Bramwell 
(1976). 

4. Theory 
The method developed below is based on the classical lifting line method, see for 

instance Duncan, Thom & Young (1970)) but in the present work the symbols V*, 
I?*, L, etc., all represent instantaneous values. Although we follow the same steps as 
the classical theory, the form of the expression becomes quite different. This is due to 
the fact that in flapping flight we have no simple analytic relationship between the 
geometry of the wake and the induced velocity. 

As shown in figure 1 (b)  the relative velocity V* has three components: the forward 
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velocity - Ui, the flapping velocity ~f: qb*n, and the induced velocity w*. Following 
Lighthill (1977) ,  we write the n and 1 components of V* as 

V * . n  = - Ucos$sinefr*d+w:, V * . I  = - U C O S O + W ? .  

In  potential flow, the spanwise velocity V* . m has no effect on the forces and is there- 
fore not considered. We now introduce the non-dimensional quantities c, r ,  V, w, and 
r, defined as 

c = c*/s, r = r * /s )  V = V*/U, w = w*/U, and I' = r* /Us .  

The n and 1 components of V* then become 

V . n  = Vn+w,,, V.1 = v+wnl, 
where 

V ,  = -cos$sinB+rv- P +wfn, 4= -cosO+wf,, 
77 

and u is the reduced frequency (or frequency parameter) defined by 

v = W S / U )  

wfl and wfn are the 1 and n components of the far wake induced velocity, and wn1 and 
w,, are the corresponding components of the near wake induced velocity. The 
velocity wf is determined separately using approximate values for the vortex strength, 
found by using the present method with wr = 0 initially. The total velocity is, there- 
fore, the sum of two known components, V, and K, and two unknown components, 
wnl and LO,,, the spanwise component being neglected. 

We have two equivalent expressions for the magnitude N of the local normal 
force N, viz. 

N = pV*r* and N = +p( V*)zSCN, 

the second being simply the dimensional relationship, where S is the wing area and 
V* = IV*I. If we equate these two equations and take C, = 2 7 7 a ,  the theoretical 
value for thin aerofoils, where a is the effective incidence, we find that 

r = rc va. (4) 
Now V and a are given by 

v2 = (V, + w,J2 + (y+ tonl)', a = a. + tan-1 

We can make the approximations 

on the assumptions that w < V ,  and that V . n  < V . l .  Substituting for V and a in 
equation (4) gives 

where 
r = E + FW,,, ( 5 )  

77C 
(VFl+ V;)* and F = -(VFl+ Vf)a 

Y 
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are known, whereas r and wnn are as yet unknown. We represent the spanwise circu- 
lation distribution by a Fourier series, so that a t  a point P along the span 

W m 

r ( P )  = C A,sinnllf(P) = A,b,, 
n = l  n = l  

where $(P) = cos-lr(P) and n = 1, 3, 5, ... . This series satisfies the conditions that 
the loading must vanish a t  the wing tips, and must be symmetric about the centreline. 

We must now relate the induced velocity w,, to the circulation. We may begin with 

in which the factor awn,/8r is the velocity induced a t  a point P, per unit F, by the 
vortex loop leaving the trailing edge a t  r = cos $. After substituting for ar/a$obtained 
from (6), the induced velocity ( 7 )  becomes 

m 

where 
aw,, 

cl, =so T~osn$d$, and n = 1 , 3 , 5 ,  ... . 

The induced velocity per unit circulation aw,,/ar is evaluated numerically a t  2Y 
points along one wing, located at  constant intervals A$ = n / 4 N .  To evaluate the 
coefficients d, we use Filon's (1928) formula for trigonometric quadratures and find 
that 

where 
d, = (C&t + 782%--1) A$, (9) 

4 sin nh 4 cos nh , 7=--- 
(nh)2 (nhI3 (nh)2 * 

2(1 +cos2nh)-4sinnhcosnh c =  
S,, is the sum of the even ordinates of the curve y = (8wnn/aI') cos nllf between zero 
and in inclusive, less half the first and last ordinates, and X2n--1 is the sum of all the 
odd ordinates. 

The final step is to combine equations ( 5 ) ,  (6) and (8) to obtain a linear equation 

in the An's: N 

2 (b,-nd,F) A ,  = E. (10) 
n = l  

It remains to  solve (10) simultaneously a t  N points along one wing to obtain the 
first N coefficients of the Fourier series. The induced velocities can then be evaluated 
by using equation (8)) so that both V and I' can be calculated. 

Using equations (l), (3) and (6)) we find that the lift is 

A A,Jhn ((V A m) . k) sin nllf sin $ d$, 
L c, = r- = - 

2pu2s n = 1  0 

where n = 1 , 3 , 5 ,  . . . and A is the aspect ratio, A = 4s2/S. The expression for the thrust 
coefficient is similar, except that we take the dot product with i instead of k. The 
classical lifting line results can be recovered from this equation since for rigid, non- 
flapping wings m = j, so that (VA m) . k = - 1. The lift coefficient is then 

C, = in A A ,  and L = in Us (USA,). (12) 
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Noting that I?* = Us Zz= A ,  sin n$, equation (12) is the classical lifting line result, 
derived for instance in Duncan et al. (1970). Similarly, if w is constant along the span 
then - C, = gnw AA, is the aircraft’s induced drag coefficient, so that CDt = ( w * / U )  C,, 
as in the classical theory. 

I n  flapping flight, the x and z components of ( V A ~ )  vary along the span and, 
therefore, all tlhe terms of the Fourier series (6) are required in the evaluation of (11). 
This equation is of the same form as the equation for the coefficients d,, and, therefore, 
we again make use of Filon’s formula, and find that 

2 N - 1  

n = l  
c, = -Ah X An(5T2n + ~Tzn-l) ,  

where h = n f 2N,  n = 1 , 3 , 5 ,  . . . , and 5 and 7 are defined as in equation ( Q ) ,  and T,,, and 
Tzn-l are defined in the same fashion as S,, and S2,-l. Similarly one can show that the 
expression for the power coefficient is 

which, using Filon’s formula, becomes 

where U,, and U,,-, are defined in terms of the function V .  1 sin n$ sin 2$, 

5. Numerical results 
5. I .  Limiting cases 

The above theory has been coded in FORTRAN IV and numerical results have been 
obtained using Southampton University’s ICL 2970 computer. Three limiting cases 
were examined to check, as far as possible, the validity and the accuracy of the 
program, the numerical method, and the model. The simplest limiting case is the 
rectangular, finite aspect ratio, untwisted wing in steady, non-flapping flight. This is 
simulated by using very small values of v and p. The values of lift and induced drag 
obtained (not reproduced here) were within 0.5 yo of the classical results (Duncan et al. 
1970). 

The impulsively started, non-flapping, finite-aspect-ratio wing provides a non- 
steady test case, in which we compare our results with those of Jones (1940). Only the 
circulatory lift is accounted for in the present method, that is the first term of the 
expansion N = f(a, V) +g(ci, V) + . . . and this correctly tends to zero at  the start of 
the motion, as shown in figure 3. When X / C *  -+ co, where x is the distance travelled, 
the lift tends to the value given by the lifting line theory. The lift calculated by Jones 
includes the second term g(k, V), which is the lift due to the pressure fields caused by 
the accelerations and rotations. A t  x = 0, this lift is equal to one half of the lift of a 
wing of infinite aspect ratio in steady flow. Hence, Jones’ curve has a different ralue 
of the starting lift. In  the limit of x/c* + co, the lift calculated by Jones remains 1.3 ;/o 
below the lifting line value, but Jones provides no explanation for this discrepancy. 
The difference between the present results and those of Jones is attributed to the 
differences between the models rather than to numerical errors in our calculations. 
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FIGURE 3. Lift coefficient variation with distance travelled from rest in fixed wing flight 
(ao = 0.1 rad, A = 6, elliptic wing). __ , lifting line ( x / c  -+ 00);  - - - , present method; 
-.- , Jones (1940). 
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FIGURE 4. Induced drag coefficient variation with distance travelled from rest in fixed wing 
flight (ao = 0-1 rad, A = 6, elliptic wing). --, lifting line (x/c -+ a); - - -, present method. 

The present method also gives the induced drag coefficient, shown in figure 4, which 
was not calculated by Jones. The induced drag has the correct limiting values a t  
X / C *  = 0 and X / C *  + m. Just after the start of the motion we find that the induced 
drag is larger than its final value because of the proximity of the starting vortex. 

The final test case is a pair of untwisted wings in flapping flight with both the wing 
incidence a,, and the incidence 8 of the body axis equal to zero. The lift developed 
during the upstroke is then expected to be the opposite of that developed during the 
downstroke. The thrust against time curve, on the other hand, is expected to be the 
same for each of the two strokes. The variation of the forces is expected to be smooth. 
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FIGURE 5 .  Variation of the thrust and lift coefficients CT and C L  throughout one complete period 
of the flapping motion (Y = 2, p = 80°, 0 = y = 0"). -, C,, - - -, CT. 

The numerical results, shown in figure 5 ,  have the desired characteristics. I n  addition, 
they demonstrate that when a. is not zero (ao = 6" in the example shown) a net lift 
is developed and different amounts of thrust are produced on the upstroke and 
downstroke. 

5.2. Unsteady and three-dimensional effects 

The neglect in previous work of the unsteady and the three-dimensional effects was a 
major reason for undertaking the present study. I n  this section we propose to identify 
these effects by examining some numerical examples of the instantaneous forces. The 
parameters determining the magnitude of the unsteadiness and the three-dimension- 
ality are the frequency parameter and the flapping amplitude respectively. The 
relationship between both the average forces and the efficiency and these parameters 
will be the subject of the next section. 

The effect of the unsteady aerodynamics is best demonstrated by considering the 
thrust coefficient as a function of time. Since the approximate quasi-steady analyses 
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FIGURE 6. Variation of C ~ l v 2  with dimensionless time t /T  during one stroke a t  different frequency 
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FIGURE 7. Variation of the lift coefficient C L  with dimensionless time tlT during one stroke for 
different flapping amplitudes p for the Oehme & Kitzler (1975) planform ( A  = 10, v = 1 ,  
cIo = y = 0 = 0"). - , present method (unsteady); - - -, quasi-steady (v + 0). 

presented in the appendix suggest that  C, cc v2, we plot C,/v2 in figure 6 as a func- 
tion of t/T (T = flapping period) for the case where there is symmetry between the 
downstroke and the upstroke, i.e. a,, = y = 6' = 0". The curves support the para- 
metric predictions in that, for sufficiently large times, C T / v 2 +  constant. The unsteady 
effects manifest themselves in the finite rate of increase of C, a t  the beginning of the 
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stroke, due largely to the proximity of the transverse vortex. As the frequency 
increases, the build-up of the thrust takes an increasing part of the stroke. A conse- 
quence is that, if cT cc vx, then x < 2, and this will later be seen to affect the efficiency. 

The most obvious three-dimensional effect is that on the lift coefficient. It is shown 
in figure 5 that, whereas the thrust (and power) coefficients tended toward constant 
values at  the end of each stroke, the lift coefficient reached a maximum and then 
decreased significantly. The explanation of this phenomenon is that the lift is the 
vertical component of the normal force, C, N C, cos #. When the effect of the trans- 
verse vortex has subsided, C, N const., and hence so are C, and C,, and C, cc cos #. 
This is demonstrated in figure 7, showing the lift coefficient (full line) as a function 
of time for different flapping amplitudes, all other variables being kept constant. 
Each of the dashed curves represents a constant times cos # and shows the variation 
of C, during a cycle which would be obtained from a quasi-steady analysis. 

The emphasis throughout the present work has been on a flapping model which 
incorporates constant angular velocity up- and downstrokes. Many experimental 
situations correspond more closely to sinusoidal motion and sample calculations were 
carried out using a modified computer code to represent this situation. The method 
for the constant angular velocity motion was designed to deal with a situation in 
which the bound circulation increased monotonically. It was found to be unsuitable 
for the sinusoidal motion in which the circulation increased and then decreased during 
a single stroke. For this case, the bound circulation was assumed to remain constant 
during the second half of the stroke and was shed at  the end of the stroke. Numerical 
results showed that both C,(t) and C,(t) varied approximately as sin2wt and that 
the average values cT and cp were little different from those for the constant angular 
velocity motion. Although still present, the unsteady effects on the variation of the 
aerodynamic forces with time (shown for the constant angular motion in figure 5) 
are less evident due to the inherently sinusoidal variation of cT(t) and Cp(t ) .  

5.3. Parametric results 

Using numerical examples of the theory described in $4, we now examine the depen- 
dence of the average forces, the average power, and the efficiency on the kinematic 
and geometric parameters. The kinematic parameters considered are the frequency 
parameter v, the flapping amplitude /3, and the set incidence go. The geometric para- 
meters are the wing shape and the aspect ratio, A .  Parametric results have been 
obtained by Kuchemann & Weber (1953), using a quasi-steady theory for the cases 
of a heaving wing and a high-advance-ratio propeller, both of elliptic planform. Under 
the quasi-steady assumption, the wings were elliptically loaded, and Kuchemann & 
Weber found that 

- 2na c, = 0 = CL0, 
1 + 2/A 

7 = A / ( A  + 2) 

for the sinusoidally oscillating wing, where CLo is the steady-state lift coefficient, 
a is the amplitude of the heaving motion and r,~ is the efficiency. Note that our defini- 
tion of the thrust coefficient differs from that of Kiichemann & Weber, in that it 
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includes all the horizontal forces except those arising because of viscosity. Further 
parametric results are derived in the appendix using an approximate quasi-steady 
theory. 

The planform used in all the calculations, except those exploring the effect on 
efficiency of different planforms, is that described by Oehme & Kitzler (1975). It has 
a constant chord along the inner half of each wing and a parabolically decreasing 
chord along the outer half, 

c = co for 0 < r < 0.5, 

c = 4c0r(1-r)  for 0.5 < r < 1.  

According to Oehme & Kitzler, this planform shape gives a good representation 
of that of many types of bird. 

Consider first the average lift coefficient cL. Lift can be obtained either by setting 
the wing hinge axis (body axis) a t  an angle B relative to the flight path, or by setting 
the wing at  an angle a. to the wing hinge, or by any combination of these two modes. 
Results of calculations for C L  for a frequency parameter v = 1 and flapping amplitude 
,8 = 40" have been compared with the steady-state lift coefficient over a range of 
angles of incidence. The principal features of the results were the linear relationships 
between GI, and incidence for the flapping wing, the small difference ( < 2 %) in the 
values of cL a t  a given incidence for the steady and flapping wings, and the small 
differences ( < 1 %) resulting from the use of either a, or 8. The consequences of using 
a. or B are discussed in the appendix and here we concentrate on the effects of frequency 
and amplitude. Kiichemann & Weber predict that  the average lift is independent 
of v and p, i.e. c, = C,, which is equivalent to the small flapping amplitude limit of 
the quasi-steady result 

derived in the appendix. 
Figure 8 shows the effect of v and ,8 on C, according to our unsteady theory and 

the above quasi-steady results. We see that GL = C ,  gives correctly the small- 
amplitude limit, whereas (15) gives the low-frequency limit, which is also the lower 
bound for the lift. It is clear, however, that  the mean lift may be significantly different 
from the quasi-steady value. I n  particular, we see that (a~?,/av), is always positive; 
(acL/a,8), on the other hand is negative for small v and increases with v. This, then, 
is a significant difference between our unsteady theory and the quasi-steady approxi- 
mations. Since the difference between the quasi-steady and the unsteady theories 
lies in the treatment of the vortex wake, we are led to conclude that in the unsteady 
theory the induced velocity field is such as to result in a higher average lift coeficient. 

Next we consider the relationship between the average thrust coefficient C, and 
the frequency parameter v, the flapping amplitude p, and the incidence a,. Using the 
results (1  3) and (14) for heaving wings and replacing the heaving amplitude a by the 
flapping amplitude p, the quasi-steady theory predicts that cT = avzpz- ba& where 
a and b are constants. In  $ 5 . 2 ,  we argued that CT cc vx with x < 2 because of the 
unsteady aerodynamics. Figure 9 shows log-log curves of I?, as a function of v at 
different flapping amplitudes. The slope of the curves correspond to the exponent 2, 
and increases from x = 1.81 when /3 = 20" to x = 1.95 when p = 120". The rise of 
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FIGURE 9. Variation of the average thrust coefficient ??T with frequency parameter v for various 
amplitudes. -, present method; - - -, UT cc v2. 
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FIQURE 10. Variation of the average thrust coefficient c~ with flapping amplitude p for various 
frequency parameters v. --, present method; - - -, ci~ ot /Iz. 

the exponent with flapping amplitude is explained by the increase of the average 
distance of the wing from the starting transverse vortex with F, which results in 
smaller induced velocities and hence a larger thrust. The average thrust coefficient 
CT is shown as a function of p for different values of v in figure 10. I n  this case the 
exponent y in c, cc is seen to increase from 5 = 2.01 when v = 1 to 6 = 2.15 when 
v = 3. According to the quasi-steady theory the exponent 6 should be equal to 2. The 
variation of c, - ( f ? T ) a o =  with the incidence a, was found to be 

cT - ( C T ) a o  = 0 OC at1, 
whereas the quasi-steady theory predicts it is proportional to a;. 

I n  each of these cases of the variation of cT with v ,  p and a,,, the numerical calcula- 
tions result in values of the exponent of 2 + ~ ( v ,  p) where e is small. The small dif- 
ference between these results and the quasi-steady results, which may seem to be of 
little significance, will later be shown to have an important effect on the efficiency. 

The relationship between the average power coefficient cp and v and p may be 
examined in a manner similar to that of c,. Figure 11 shows the variation of cp with 
v for different values of ,8 and figure 12 the variation with for different values of v. 
The curves are now not straight lines, so that we cannot give a single value to their 
slope. It is clear from the graphs, however, that the slope is equal to 2 for small values 
of both v and p, and deviates therefrom when either v or /3 becomes large. The quasi- 
steady result derived in the appendix is C, cc v2pz. Thus, as for previous results of 
the present theory, where the quasi-steady theory predicts exponents equal to 2, the 
results of the unsteady theory give values of 2 + ~ ( v ,  p). 
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FIGURE 11. Variation of the average power coefficient ??p with frequency paranieter v for various 
flapping amplitudes j9. -, present method; - - -, ?& x va. 
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FIGURE 12. Variation of the average power coefficient C p  with flapping amplitude /3 for various 
freqiency parameters v. --, present method; - - -, c p  a P2. 
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Finally, we consider the efficiency, which is defined as the ratio of the average rate 
of doing work by the thrust to the average power input a t  the wing hinges 

?j = mp = CT& 
We restrict ourselves to the case where a. = y = 6' = 0", where the flapping wings 
act as a purely propulsive system. Given these restrictions, the efficiency is still a 
function of the wing planform, the aspect ratio A ,  the frequency parameter v, and 
the flapping amplitude p. The effect of the planform shape on the efficiency is demon- 
strated by calculating the efficiencies of four wings of different planforms at  arbitrarily 
chosen values of A ,  v and p, listed in table 1. The four planforms are the rectangular, 
the straight taper, the elliptic, and the semiparabolic planform of Oehme & Kitzler 
(1975). At the chosen conditions of A = 10, v = 1, p = 40", the rectangular wing has 
the lowest efficiency, 7 = 75.7%. It is perhaps significant that the wing shape best 
describing that of birds, the semiparabolic, is one of those with the highest efficiency. 

The effect of the aspect ratio on the efficiency of flapping wings is demonstrated in 
figure 13 for both the rectangular and semiparabolic planforms. The efficiency is 
found to increase with the aspect ratio; for the Oehme & Kitzler wing it increases 
from 7 = 57.8% when A = 4 to r,~ = 85.4% when A = 20. The increasing eficiency 
of flapping flight with aspect ratio is a consequence of the decrease of the induced 
drag of a wing in steady flight with increasing aspect ratio. The increase of efficiency 
with aspect ratio has clear implications for birds. Birds such as the Swift (Apus apus), 
which spend a considerable part of the day in flapping flight, probably save a sub- 
stantial amount of energy through the use of high-aspect-ratio wings. 

When the wing shape and the aspect ratio are fixed, the efficiency is still a function 
of the frequency parameter and the flapping amplitude, as shown in figure 14. As 
v-f 0 the efficiency becomes independent of p, and the limiting value of 0.8 lies 
between the quasi-steady results for a heaving wing (0.83) and a propeller (0.72) 
obtained by Kiichemann & Weber (1953). The quasi-steady theory does not, however, 
show any dependence of ?j on v or p. The present study shows considerable reductions 
of 7 with v and p, both (@/av), and (aT/ap), being negative. 

The only experimental results known to us to provide parametric relationships are 
those of Moineau (1939) and those of Archer et al. (1979). Moineau tested rigid heaving 
wings in a water channel, but a t  a low Reynolds number and a t  frequency parameters 
about ten times larger than those considered here. Moineau found that the average 
thrust increased as the square of the frequency w and the amplitude a, whereas the 
power increased as the cube of w and a, i.e. 

T K da2 ,  P K w3a3. 

These experimental results for the thrust confirm both the classical result that rigid 
wings - both heaving and flapping - produce thrust (e.g. Lighthill 1974) and also the 
predictions of the present theoretical model regarding the variation of the thrust with 
frequency and amplitude. The proposed explanation for the discrepancy between the 
theoretical results for the power and Moineau's results is that in his experiments the 
power required because of the profile drag was the dominant term. Lighthill (1977) 
has shown that a t  high frequencies the power required because of the profile drag is 
P cc w3a3, which would explain Moineau's results. Chabonat (1970) and Fejtek & 
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Wing shape 7 (%) 

elliptic 75.7 
Oehme & Kitzler (1975) 75.7 

rectangular 68.7 
tapered (taper ratio = 0.5) 73.1 

TABLE I .  Comparison of the efficiency of different planform shapes 
( A  = 10, u = 1, /? = 40°, a,, = y = 0 = 0'). 

r 
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Aspect ratio A 

FIGURE 13. Variation of the efficiency T/ with aspect ratio A ( v  = 1, p = 40°, a,, = y = 0 = 0"). 
-, Oehme & Kitzler (1975) planform (semiparabolic) ; -.-, rectangular planform. 
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FIGURE 14. Variation of the efficiency 7 with frequency parameter v for various flapping ampli- 
tudes /3 for the Oehme & Kitzler (1975) planform (A = 10, a,, = y = 0 = Oo). 0, heaving wing 
quasi-steady theory (Kuchemann & Weber 1953); 0, propeller (Kuchemann & Weber 1953). 
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FIQURE 15. Variation of the thrust coefficient CT with the reciprocal of the advance ratio h 
from the experiments of Archer et al. (1979). x ,  A = 4, U = 10.7 ma-', C T C Z  ( l /A )2 '5 ;  
A, A = 6, U = 10.7 m a-l, C T  ( l / h ) 2 ' 3 8 .  

Nehera (1980) also obtained significant drag reductions from heaving or flapping 
rigid wings in wind tunnels but their parametric trends are less clear. 

Archer et al. (1979) tested a flexible flapping wing in a wind tunnel at  frequencies 
up to 7 Hz, amplitude up to 30' and Reynolds numbers based on wing chord up to lo5. 
They describe their results in terms of the advance ratio h where h cc l/va. In order 
to compare their results with the present study their data have been replotted to 
show the variation of the thrust coefficient as a function of l / h ,  as shown in figure 15. 
We find that C, cc ( ~ 6 1 . ) ~ ~ ~  for A = 6 ,  and C ,  cc ( ~ a ) ~ ' 5  for A = 4. The differences 
between these exponents and the predicted values of 2 may be due to the twist 
flexibility of the wings of Archer et al. and to the effect of profile drag described earlier. 

6. 
In  this final section the theory developed earlier is applied to the steady forward 

flight of birds. We shall calculate, as numerical examples, the power required for 
aerodynamic purposes as a function of forward speed for two different birds, the 

The power curve for birds 
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Pied Flycatcher (Fieedula hypoleuca), and the Domestic Pigeon (Columba livia), for 
which the results of previous theoretical work have been described by Rayner 
(19793). 

It is appropriate to review the basic assumptions of the model to be used for these 
calculations in the context of the application to bird flight. The essential assumption 
is that of inviscid flow, used to establish the unsteady lifting line method. The aero- 
dynamic forces acting on the flapping wing are calculated using this method inde- 
pendently of any viscous effects. In steady flow this is justified when the Reynolds 
number is large. For the case of bird flight, where the Reynolds numbers are in the 
range lo4 < Re < lo6 (Nachtigall 1977), the assumption of the independence of 
inviscid and viscous effects would be justified in steady flows such as gliding flight. 
However, study of the dynamic stall of aerofoils (McCroskey 1975; Mehta 1977; 
Maresca, Favier & Rebont 1979) has shown that in unsteady flow complex boundary- 
layer effects result in a strong coupling between inviscid and viscous phenomena. In  
particular, the average lift can exceed its steady-state counterpart considerably as a 
result of the lift curve extending beyond the steady-state stalling incidence (Maresca 
et al. 1979). As a first approximation, therefore, the dynamic viscous effects may be 
accounted for in the unsteady lifting line method by removing the restriction that the 
local incidence should be less than the steady flow stalling incidence. 

The second assumption made in the description of the flow is that the unsteadiness 
is accounted for by considering the unsteady induced velocities, but neglecting the 
virtual mass effect. In the case of bird flight, Von Holst & Kiichemann (1942) have 
shown that the frequency parameter v( = o s / U ) ,  based on the semispan, is of order 
one. The frequency parameter based on the semichord, which is relevant to virtual 
mass effects, will then be about one order of magnitude lower, and virtual mass effects 
will therefore be small. It is also assumed that the inertial power associated with 
deceleration of the wings a t  the end of each stroke is negligible. Weis-Fogh (1973) and 
Cloupeau et al. (1979) have shown that it is a significant contribution to the power 
consumption of insects, but following Rayner (1979b) we concluded that, for the 
increased scale of birds, it is a negligible term. Finally, we make the assumption of an 
incompressible fluid. This clearly applies to bird flight, where the highest recorded 
sustained speed in level flight is a remarkable 47 m/sec (Lighthill 1974). 

One can readily observe that the wings of most birds have little or no sweep, and 
Greenewalt (1962) has shown that their aspect ratios lie between 5 and 18. Such wings 
satisfy the assumptions of the lifting line theory which is used in the present study. 
The assumption of constant angular velocity of flapping is clearly not exact in the 
case of bird flight, although Brown (1953) and Wilding (1961) have shown that 4 is 
approximately constant during a large part of the downstroke, there being a rapid 
deceleration at  the end of it. The kinematics of the upstroke are often more complex, 
but, since the loading of the wings is much lower than during the downstroke, their 
accurate modelling may be of less importance. 

The active variation by birds of parameters such as variable wing camber, twist 
and span is not considered in the model. Special features of bird wings such as chord- 
wise flexibility or wing porosity are also neglected. Previous theories have also 
ignored these effects, and in addition all the earlier theories were quasi-steady. Our 
aim, then, is to obtain estimates of the instantaneous forces on a bird and to estimate 
the power requirement according to an unsteady theory, given a set of data which 
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characterize the bird, using an estimated drag. These power estimates can then be 
compared with those of the more recent quasi-steady theories. 

The balance of forces required for steady level flight can be achieved by different 
combinations of the kinematic parameters, but for our present calculations we 
adopted a single systematic procedure. We assume the mass, the geometry and the 
flapping frequency are known, the latter being taken to be constant (Rayner 1979c; 
Goldspink 1977). The wings are untwisted, uncambered and set a t  zero degrees relative 
to the wing hinges. The only remaining free parameters then are the flapping ampli- 
tude /I, and the body axis angle 8. The final balance of forces is approached by 
successive approximations, through adjustments to the values of /? and 8. This 
arbitrary method is not necessarily the most efficient one, but the results will never- 
theless include the features resulting from the unsteady nature of the flow. The drag 
forces are evaluated using Rayner’s (19793) method (his equation (5) for the parasite 
drag). 

The power curves for the Pied Flycatcher (Ficedula hypoleuca) and the pigeon 
(Columba livia) were calculated as numerical examples of the method described in 
$ 4  using the data of table 2 and the results are shown in figures 16 and 17. The figures 
also show Rayner’s ( 1 9 7 9 ~ )  results, and those calculated using Pennycuick’s (1975) 
theory. The three curves are strictly not directly comparable, because different 
definitions of the power are used. I n  the present study and in Rayner’s work, the power 
is defined as the rate of work expenditure to sustain the flapping motion. Rayner 
calculates this by considering the fluid kinetic energy in the far wake, whereas in the 
present study we examine the torque about the wing hinge. I n  Pennycuick’s definition, 
the power is the rate at which the average aerodynamic forces do work. 

We compare the curves obtained by the three methods according to three criteria: 
(1) the minimum power, (2) the minimum power speed, and (3) the parametric trends, 
P cc U”. The apparent agreement between the three values of the minimum power is 
somewhat misleading because of the different definition used in Pennycuick’s theory. 
If the propulsive efficiency is taken into account then Pennycuick’s minimum power 
is some 40-60 % above the present one. The minimum power speeds also differ widely, 
Rayner’s being only one half of that  predicted by the present method. Pennycuick’s 
curves are shallow, so that powers close to the minimum are found over a wide range 
of speeds. I n  the present calculations we found that a t  high speeds P cc U x ,  where x 
is slightly smaller than 3. I n  Rayner’s calculations the power increases approximately 
linearly with speed at high speed, and Pennycuick’s results take on intermediate 
positions. We conclude, then, that there are important qualitative differences between 
the results obtained by the three methods. 

We shall now attempt to  find explanations for the differences between the curves. 
Three major factors differentiate the work of Pennycuick from that of Rayner and 
from the present study, viz. (a) the absence of unsteadiness in Pennycuick’s model, 
(3) the different forms of treatment of the profile power (Rayner 19793), and ( c )  the 
different definition of the power. These factors are important enough to cause large 
qualitative differences, but we shall not examine them in detail. It is somewhat 
surprising that Rayner’s results should be very different from those obtained in the 
present study, since Rayner uses the same definition of the power and does allow for 
the unsteadiness of the aerodynamics to some extent by considering a discrete wake. 
The difference is attributed, a t  least in part, to the different modelling of the body 
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Pied 
Pigeon Flycatcher 

mas8 rn (kg) 0.4 0.012 

wing area S (m2) 63 x 10-3 9 x 10-3 
semispan 9 (m) 0.335 0.115 

flapping frequencyf (Hz) 5.5 14.3 
aspect ratio A 7.13 5.88 

TABLE 2. Bird characteristics used in the numerical calculations. 
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FIGURE 16. Variation of the power P with steady flight speed U for the Pied Flycatcher calculated 
using the data of table 2. --, present method; -.- , Rayner ( 1 9 7 9 ~ ) ;  - - -, Pennycuick (1975). 

axis inclination 19. I n  the present method the body axis is perpendicular to the plane 
in which the wings flap. The angle I9 is approximately inversely proportional to U2,  
and is small except a t  low speeds. In Rayner's method the body axis inclination I9 is 
related to the stroke-plane angle y through relationships of the form 

I9 = constant - y. 

As forward speed increases, y increases and the body inclination decreases. Rayner 
has experimented with a range of values of the constant given by 45' < constant < 80". 

Although no explicit values of body axis inclination resulting from Rayner's 
(1979b, c )  calculations are quoted, they appear in general to be fairly large, whereas 
in the present work they were small. The effect of this on the power is demonstrated 
by the quasi-steady parametric predictions for the power curve, developed in the next 
paragraph. 

The approximate parametric dependence of the power on the forward speed can be 
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FIGURE 17. Variation of the power P with steady flight speed U for the pigeon calculated using 
the data of table 2. - , present method; -.- , Rayner (1979~); - - -, Pennycuick (1975). 

obtained from the quasi-steady parametric relationships for the forces. For the 
average thrust coefficient we have 

CT = avzp2 - b82, 

where a and b are constants, using the equivalence of cx0 and 8 for small /I. The approxi- 
mate form of the drag coefficient used by Rayner and in the present study is 

C, = c+d8 

for small 8, where c and d are constants. The balance of the horizontal forces then 
requires that 

av2p2-be2 = c+d8. 

Since the frequency is constant, the frequency parameter is inversely proportional to 
forward speed, vcc U-I. The angle 8 is inversely proportional to U2 because 

= mg cc BU2, where g is the acceleration due to gravity. Eliminating v and 8 then 
gives for 

The power P is given by 
p2 N c'U2+d'+b'U-2. 

Pcc v2p2U3 N b"U-1+d"U+c"U3. 

According to this approximate quasi-steady analysis the power required because of 
the drag has a term linearly proportional to forward speed, and due to  the body axis 
inclination, in addition to the usual cubic term. 

It is thought that in the present theory and at  high speeds the cubic term in the 
power equation dominates, whereas in Raper 's  method the linear term dominates. 
This view is supported by the different shape of the power curve that Rayner (1979 b )  
obtains when keeping the body inclination equal to zero. In that case the power is 
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FIGURE 18. Variation of the dimensionless cost of transport with steady flight speed for the 
pigeon. __ , present method; -.--, Rayner ( 1 9 7 9 ~ ) ;  - - -, Pennycuick (1975). 
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proportional to an index somewhat larger than two at  the high speed end of the curves, 
which is not its limiting value. We conclude tentatively, therefore, that fluid-mechani- 
cal differences between Rayner’s model and the present one are masked, a t  present, 
by the effects of the different models of the body inclination. 

Finally, the cost of transport C, defined as the energy expended per unit distance of 
travel, non-dimensionalized by dividing by the weight, C = P/rngU, is shown as a 
function of forward speed in figure 18. The previous remarks on the power curve 
comparisons remain valid, and we note that the present method is the only one to 
exhibit a well-defined minimum for the cost of transport. The present, unsteady 
method predicts for the pigeon a minimum cost of transport speed of 11 m/s. Brown 
(1953) observed that his pigeons flew a t  a speed averaging 9.5 m/s which is almost 
identical to the predicted minimum power speed shown in figure 17 and is 14 yo below 
the minimum cost of transport speed. Such agreement is good, considering the approxi- 
mate nature of the drag estimates and the features of bird flight that have been 
neglected. 

The results in this section demonstrate the potential of the present method to model 
bird flight. Fluid-mechanical differences between the present method and that of 
Rayner (1979b, G) are thought to be obscured by effects due to different models of the 
body axis inclination. There is good agreement between the calculated minimum 
power and minimum cost of transport speed for the pigeon and the speeds observed 
by Brown (1953). I n  the context of the present inviscid method, areas for further 
investigation include the body axis inclination and the extension of the present 
calculations to other birds. 

7. Conclusion 
An unsteady inviscid aerodynamic theory of rigid flapping wings in forward flight 

is presented. It is based on the classical lifting line method, and is therefore restricted 
to unswept wings of high aspect ratio. The detailed inclusion of the effects of unsteady 
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induced velocities, which have been omitted from previous theories of flapping wings, 
has shown unsteadiness to be an important aspect. The method is applicable a t  low 
values of the reduced frequency, since unsteadiness has been included to first order 
only. 

The unsteady effects in flapping flight have been included by using a three-dimen- 
sional, unsteady model of the vortex wake; consequently the computed results are 
not restricted to small flapping amplitudes. Simplified limiting cases of the classical 
impulsively started finite-aspect-ratio wing are well modelled by the present method. 
Predictions relating the forces and the power to the geometric and kinematic para- 
meters are made and compared with the limited available experimental evidence. The 
propulsive efficiency is estimated and found to be a function of wing geometry, 
frequency parameter and flapping amplitude. 

Finally, the theory is applied to the flapping flight of birds, and the aerodynamic 
power curves for the Pied Flycatcher and for the pigeon are evaluated for comparison 
with previous theories. Important differences are found between the present results 
and those of Pennycuick (1975) and Rayner (19796). Although the present results 
are thought to be more representative of the inherently unsteady nature of avian 
flight mechanics, their absolute accuracy may still be limited. Factors such as wing 
twist, variable geometry, viscous/inviscid interactions, wing porosity and boundary- 
layer control are undoubtedly important in determining the detailed aerodynamics 
of bird flight. However, the principal result of the present work suggests that further 
progress in modelling the complex phenomena associated with flapping flight will 
only be made by descriptions which correctly include unsteady aerodynamic 
phenomena. 

I n  view of the complexity of flapping flight, particularly in regard to the application 
to  avain flight mechanics, further progress is likely to depend on the careful evaluation 
of the relationships between experimental results and modelling. The extreme diffi- 
culty in carrying out precisely defined and controlled experiments on natural systems 
would suggest that the most profitable area for study would be wind-tunnel experi- 
ments on rigid flapping wings of simple planform and section, designed to measure 
time-resolved forces and power consumption. Only when the results of such experi- 
ments have been satisfactorily explained can the more complex problem of the pre- 
diction of the forces generated by the porous, flexible, variable geometry, flapping 
wings of birds be resolved. 

The authors wish to express their gratitude for the many stimulating discussions 
with Professor G. M. Lilley during the course of this work and for his helpful advice 
during the preparation of the manuscript. 

Appendix. Approximate and quasi-steady parametric analysis 
We obtain a number of approximate quasi-steady dimensional relationships between 

the kinematic and the geometric parameters on the one hand, and the force and power 
coefficients on the other hand, by approximating the expressions used in the theory 
and considering a simple case. The principal approximation is the neglect of the 
induced velocities, thus making the results quasi-steady. The assumptions are that 
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y = 6 = 0, that U is large, and that v and /3 are small. With these assumptions and 
approximations we have 

V . n  N rvpln, V . l  21 - 1 ,  a N a,+rvpln.  

Collecting equations (I), (3), (4), (11), and using the above approximate results 
gives 

where use has been made of (V A m) . k = - cos q5 when 8 = 0. The instantaneous 
lift coefficient is thus proportional to cos q5, and its average value is 

- - c, E 2na, cos q5. 

It is consistent to take CLo = 2na, since we are neglecting the induced velocities, so 
that 

in the case of constant angular velocity. Note that, when a, = 0 and 8 + 0, the inci- 
dence becomes 

a 2: tan 8 cos q5 & rvP/n N 8 cos q5 rfr r v p / n  

for small 8. The resulting average lift coefficient is 

+P CL/CL0 1: C O S Z 4  = - 2 1 (  1 +- S i y )  N Gii+ .... 

The variation of the average lift with the body inclination 8 will be less than the 
variation with the wing incidence a, according to the quasi-steady theory, although 
the difference will be small for small values of /3. 

Consider next the thrust coefficient, which, after substitution, is 

when 8 = 0. I n  the high-speed, small p and v limit, this expression becomes 

It follows that the average thrust coefficient increases proportionally to the square of 
the frequency parameter and flapping amplitude, cT cc vzP2. Kiichemann & Weber 
(1953) found a similar relation between the average thrust coefficient and the fre- 
quency and amplitude. 

Finally, the non-dimensional power coefficient may be written 

C, = 5 A v ~  arc V(V . 1) dr. Io l  
In the limiting case of high U and small v and p this reduces to the same approximate 
expression. as for C,, and so the average power coefficient is also proportional to the 
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square of the frequency parameter and the flapping amplitude. According to the 
approximate quasi-steady theory the efficiency 7 = cT/ep is independent of frequency 
and amplitude, as found by Kuchemann and Weber. 
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